Representing Real Numbers in a Generalized Numeration Systems

نویسندگان

  • Émilie Charlier
  • Marion Le Gonidec
  • Michel Rigo
چکیده

We show how to represent an interval of real numbers in an abstract numeration system built on a language that is not necessarily regular. As an application, we consider representations of real numbers using the Dyck language. We also show that our framework can be applied to the rational base numeration systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representing real numbers in a generalized numeration system

numeration systems An abstract numeration system (ANS) is given by a triplet S = (L,Σ, <) where L is a regular language over a totally ordered alphabet (Σ, <). By enumerating the words in L with respect to the radix order induced by <, we define a one-to-one correspondence: repS : N → L valS = rep −1 S : L → N. ANS: a generalization Most numeration systems satisfy the relation: m < n (usual ord...

متن کامل

Real numbers having ultimately periodic representations in abstract numeration systems

Using a genealogically ordered infinite regular language, we know how to represent an interval ofR. Numbers having an ultimately periodic representation play a special role in classical numeration systems. The aim of this paper is to characterize the numbers having an ultimately periodic representation in generalized systems built on a regular language. The syntactical properties of these words...

متن کامل

Minimal Weight Expansions in Some Pisot Bases

For numeration systems representing real numbers and integers, which are based on Pisot numbers, we study expansions with signed digits which are minimal with respect to the absolute sum of digits. It is proved that these expansions are recognizable by a finite automaton if the base β is the root of a polynomial whose (integer) coefficients satisfy a certain condition (D). When β is the Golden ...

متن کامل

Combinatorial Representation of Generalized Fibonacci Numbers

New formull are presented which express various generalizations of Fibonacci numbers as simple sums of binomial and multinomial coeecients. The equalities are inferred from the special properties of the representations of the integers in certain numeration systems.

متن کامل

Combinatorics, Automata and Number Theory

numeration systems The motivation for the introduction of abstract numeration systems stemsfrom the celebrated theorem of Cobham dating back to 1969 about the so-called recognisable sets of integers in any integer base numeration system.An abstract numeration system is simply an infinite genealogically ordered(regular) language. In particular, this notion extends the usual integ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0907.0942  شماره 

صفحات  -

تاریخ انتشار 2009